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1. INTRODUCTION

Ratio asymptotic results give the asymptotic behaviour of the ratio of
two consecutive polynomials, pn and pn+1 , orthogonal with respect to a
positive measure +. Since the first systematic study was accomplished in
1979 by P. Nevai (see [N, Theorem 13, p. 33]), a lot of work has been
devoted to obtaining asymptotic properties of this type from the recurrence
coefficients (an)n and (bn)n . Nevai studied precisely the case when these
recurrence coefficients have finite limits. Asymptotically periodic recurrence
coefficients with finite accumulation points have been studied by Van
Assche and Geronimo (see [V1, Chap. 2; V3; GV]). Van Assche also studied
the case of unbounded recurrence coefficients (see [V1, Theorem 4.10; V2]),
and recently a technique to find the ratio asymptotics of a polynomial sn

and the nth polynomial pn , orthonormal with respect to a positive measure,
has been developed by one of the authors (see [D1]).

During the past few years, some important results in the theory of
orthogonal polynomials have been extended to orthogonal matrix polyno-
mials with the consequence that this topic of matrix orthogonality is receiving
an increasing amount of interest (see [BB, D2�DV, JCN, JDP, JD, SV]). In
particular in [D6], one of the authors has extended ratio asymptotics to
orthogonal matrix polynomials with convergent matrix recurrence coefficients.
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The purpose of this paper is to study the case when the matrix recurrence
coefficients are unbounded.

We consider an N_N positive definite matrix of measures W (for any
Borel set A/R, W(A) is a positive semidefinite numerical matrix), having
moments of every order, i.e., the matrix integral �R tn dW(t) exists for every
nonnegative integer n.

Assuming that � P(t) dW(t) P*(t) is nonsingular for every matrix polyno-
mial P with nonsingular leading coefficient, the matrix inner product
defined in the usual way by W in the space of matrix polynomials has a
sequence of orthonormal matrix polynomials (Pn)n , satisfying

| Pn(t) dW(t) P*m(t)=$n, m I, n, m�0.

Pn(t) is a matrix polynomial of degree n, with a non-singular leading coef-
ficient and is defined up to a multiplication on the left by a unitary matrix.

As in the scalar case, the sequence of orthonormal matrix polynomials
(Pn)n satisfies a three-term recurrence relation

tPn(t)=An+1Pn+1(t)+BnPn(t)+An*Pn&1(t), n�0, (1.1)

where P&1(t)=%, P0(t) # CN_N"[%], An are non-singular matrices and Bn

are hermitian. Here and in the rest of this paper, we write % for the null
matrix, the dimension of which can be determined from the context. We
remark that the polynomials Rn(t)=UnPn(t), with UnUn*=I are also
orthonormal with respect to the same positive definite matrix of measures
with respect to which the (Pn)n are orthonormal, and satisfy a three-term
recurrence relation as (1.1) with coefficients Un&1 AnU n* instead of An and
Un BnUn* instead of Bn . This three-term recurrence relation characterizes
the orthonormality of a sequence of matrix polynomials with respect to a
positive definite matrix of measures (see, for instance, [AN, DL1]). In
[D2, D3, DV] a very close relationship between orthogonal matrix poly-
nomials and scalar polynomials satisfying a higher order recurrence relation
has been established. This relationship has been used to show that matrix
orthogonality is going to be a useful tool to solve certain problems of scalar
orthogonality (see [D2, Sect. 5]).

In this paper we assume that the matrix recurrence coefficients are diverging
in a particular way: we will suppose that there exists a sequence (Cn)n of
positive definite matrices such that

lim
n

C &1�2
n AnC &1�2

n =A, lim
n

C &1�2
n BnC &1�2

n =B,
(1.2)

lim
n

C &1�2
n C 1�2

n&1=I.
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When unbounded coefficients are considered in the scalar case (assuming
the same hypothesis given by (1.2)), the ratio asymptotic behaviour is then
obtained for the scaled polynomials pn(cnz). So, in the matrix case, the first
question to be solved is how the scaled matrix polynomial P(Cx), with P
a matrix polynomial and C a matrix, should be defined. Given a matrix
polynomial

P(z)= :
n

k=1

Ak zk,

we have found in the literature two equally natural definitions of P(Cx)
(see [HJ2, p. 384]),

Pl (Cx)= :
n

k=0

AkCkxk, (1.3)

and

Pr(Cx)= :
n

k=0

CkAkxk. (1.4)

However, we now show that there is a large range of possibilities including
these two ones. To avoid any confusion, we will use the notation P(C; x)
instead of P(Cx) for the scaled matrix polynomial.

Indeed, let us consider matrix polynomials of a matrix variable, that is,
finite combinations of the form

P(T )= :
finite

:n1
T n1:n2

} } } :nk
T nk :nk+1 ,

where T is the matrix variable given by

T=\
t11

t21

b
tN1

t12

t22

b
tN2

} } }
} } }
. . .
} } }

t1N

t2N

b
tNN
+

and the :'s are matrices of size N_N. For a given matrix C of size N_N,
we define P(C) in the natural way

P(C)= :
finite

:n1
Cn1 :n2

} } } :nk
Cnk :nk+1 .
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The matrix polynomial P(z) can be obtained from many different matrix
polynomials P of a matrix variable just by replacing T by zI in P(T ). For
instance, let us consider the matrix polynomial of a matrix variable

P1(T )= :
n

k=0

AkT k,

then we easily have that P(z)=P1(zI ). But also P(z)=P2(zI ), where

P2(T )= :
n

k=0

T kAk ,

and it is clear that, due to the noncommutativity of the matrix product, in
general P1 {P2 as matrix polynomials of a matrix variable. Of course,
there are many other possibilities than P1 and P2 to obtain P; for instance
if we consider B, a square root of A1 , so that A1=BB, then, we have that
P(z)=P3(zI ) where

P3(T )=A0+BTB+ :
n

k=2

T kAk ,

and clearly, in general, P3 is different from P1 or P2 as matrix polynomials
of a matrix variable.

We can define in an equally natural way the scaled matrix polynomial
P(C; z), using each matrix polynomial of one matrix variable P, from
which P is obtained in the way explained before, just by putting P(C; z)=
P(Cz). P1 and P2 give the definitions (1.3) and (1.4), respectively, which
are usually considered in the literature. What definition of P(C; z) should
we consider to study the asymptotic behaviour for orthogonal matrix poly-
nomials with unbounded recurrence coefficients? The key is given by the
three-term matrix recurrence relation (1.1). Indeed, using the recurrence
coefficients (An)n , (Bn)n , we can define a sequence of matrix polynomials
of one matrix variable as

TPn(T )=An+1 Pn+1(T )+BnPn(T )+An*Pn&1(T ), n�0, (1.5)

with initial conditions P&1(T )=%, P0(T )=P0 . It is clear that Pn(zI )=
Pn(z), n�0. We then define Pn(C; z)=Pn(Cz). This is the choice we find
the most natural, in the context of orthogonal matrix polynomials, to
define the scaled polynomial Pn(Cn ; z).

As a consequence of our definition, the scaled matrix polynomial
Pn(Cn ; z) satisfies some important properties related to orthogonality. In
fact, although the sequence of scaled polynomials (Pn(Cn ; z))n is not
orthogonal with respect to a positive definite matrix of measures (except
for trivial examples), each scaled polynomial Pn(Cn ; z) is the n th orthogonal
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polynomial with respect to a certain varying matrix weight Wn (see Section 3).
In fact this allows us to compute Pn(Cn ; z) easily without using the matrix
polynomials Pn of one matrix variable. This implies, in particular, that the
zeros of Pn(Cn ; z) are real with multiplicity not greater than N. This may
not be the case if any other definition of a scaled matrix polynomial is
used, as it can easily be checked for the choices (1.3) and (1.4), where
complex zeros, or zeros with multiplicities larger than any given number,
can appear.

To establish our main result we need to introduce the matrix analogs of
the Chebyshev polynomials of the second kind (see [D6]): We associate to
two given matrices A (nonsingular), and B (hermitian), the orthonormal
matrix polynomials (U A, B

n )n defined by the recurrence formula

tU A, B
n (t)=A*U A, B

n+1(t)+BU A, B
n (t)+AU A, B

n&1(t), n�0, (1.6)

with initial conditions U A, B
0 (t)=I, U A, B

&1 (t)=%.
We are now ready to establish the main result of this paper:

Theorem 1.1. Let (Pn)n be orthonormal matrix polynomials satisfying
the three-term recurrence relation (1.1). Suppose that there exists a sequence
of positive definite matrices (Cn)n such that (1.2) holds with A nonsingular
and B hermitian, and consider the scaled matrix polynomials Pn(Cn ; z) defined
by using (1.5). We write 2n for the set of zeros of Pn(Cn ; z) and 1=�N�0 MN ,
where MN=�n�N 2n . Then:

(a) 2n /R, and if we assume that the matrix sequence (Cn)n is
increasing then 1 is a compact set.

(b) lim
n � �

C 1�2
n Pn&1(Cn ; z) P&1

n (Cn ; z) A&1
n C 1�2

n

=|
dWA, B(t)

z&t
, z # C"1, (1.7)

where WA, B is the matrix weight for the Chebyshev matrix polynomials of
the second kind defined by (1.6). Moreover, the convergence is uniform for z
on compact subsets of C"1.

For each non-negative integer k, the sequence (Pn(Ck ; z))n is orthogonal
with respect to a certain varying matrix weight Wk , and actually, Theorem
1.1 is a consequence of a more general theorem (see Theorem 2.1) on ratio
asymptotics for orthogonal matrix polynomials with varying recurrence
coefficients (see [KV], for its scalar version).

We complete the paper studying the case when A is singular (Section 4)
and giving some examples (Section 5).
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2. RATIO ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS
WITH VARYING RECURRENCE COEFFICIENTS

We consider orthonormal matrix polynomials (Rn, k)n , k=1, 2, ..., depend-
ing on a parameter k, and given by the recurrence relation

tRn, k(t)=An+1, k Rn+1, k(t)+Bn, k Rn, k(t)+A*n, k Rn&1, k(t), n�0, (2.1)

with initial conditions R0, k(t) a nonsingular matrix and R&1, k(t)=%.
Without loss of generality, we assume R0, k=I.

The sequence of matrix polynomials (Rn, k)n is orthonormal with respect
to a certain measure which we denote by Wk .

Our main result in this section is the following.

Theorem 2.1. Let (Rn, k)n be a sequence of orthonormal matrix polyno-
mials depending on a parameter k, k=1, 2, ..., satisfying the three-term
recurrence relation (2.1). Let (nm)m , (km)m be two increasing sequences of
positive integers and assume that there exist two matrices A nonsingular and
B hermitian such that for all l�0

lim
m � �

Anm&l, km
=A, lim

m � �
Bnm&l, km

=B. (2.2)

We write 2m for the set of zeros of Rnm, km
and 1=�N�0 MN , where MN=

�m�N 2m . Then

lim
m � �

Rnm&1, km
(z) R&1

nm , km
(z) A&1

nm , km
=|

dWA, B (t)
z&t

, for z # C"1, (2.3)

where WA, B is the matrix weight for the Chebyshev matrix polynomials of
the second kind defined by (1.6). Moreover, the convergence is uniform for z
on compact subsets of C"1.

Proof. We proceed as in the proof of Theorem 1.1 in [D6].
First of all, we prove that

lim
m � �

Rnm&1, km
(z) R&1

nm , km
(z) A&1

nm , km
=|

dWA, B (t)
z&t

for z # C"1.
To do that, we consider the following matrices of discrete measures,

+n, k= :
m

j=1

$xn, k, j
Rn&1, k(xn, k, j) 1n, k, jR*n&1, k(xn, k, j),
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where xn, k, j , j=1, ..., m, are the different zeros of the polynomial Rn, k and
the matrix 1n, k, j is given by

1n, k, j=
lk

(det(Rn, k(t)))(lj) (xn, k, j)
(Adj(Rn, k(t))) (lj&1) (xn, k, j) Qn, k(xn, k, j),

where l j is the multiplicity of xn, k, j and (Qn, k)n the sequence of polyno-
mials of the second kind associated to (Rn, k)n . 1n, k, j are the matrix
weights in the quadrature formula for the polynomials (Rn, k)n associated to
xn, k, j and lj�N (see [D4]).

From the quadrature formula we can prove that � d+n, k(t)=I,

| d+n, k(t)= :
m

j=1

Rn&1, k(xn, k, j) 1n, k, jR*n&1, k(xn, k, j)

=| Rn&1, k(t) dWk(t) R*n&1, k(t) (2.4)

=I.

In order to obtain (2.3) we proceed in several steps:

Step 1. For two given nonnegative integers n and k, we have

Rn&1, k(z) R&1
n, k(z) A&1

n, k=|
d+n, k(t)

z&t
.

This follows analogously as in the first step in the proof of Theorem 1
in [D6].

Note that, according to Step 1, we have to prove

lim
m � � |

d+nm , km
(t)

z&t
=|

dWA, B (t)
z&t

, for z # C"1.

Step 2. Let us consider the Chebyshev matrix polynomials of the
second kind (U A, B

n )n defined by (1.6). Then

lim
m � � | U A, B

l (t) d+nm , km
(t)={I

%
for l=0,
for l{0.

Indeed, we can write

U A, B
l (t) Rn&1, k(t)=Sl, n&1, k(t) Rn, k(t)+ :

n

i=1

2 i, l, n&1, k Rn&i, k(t). (2.5)
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According to the definition of the discrete measures +n, k , using the expression
(2.5), and proceeding as in the proof of Theorem 1 in [D6] we obtain that

| U A, B
l (t) d+n, k(t)=21, l, n&1, k .

So, Step 2 will follow if we prove that

lim
m � �

2j, l, nm&1, km
={I

%
for j=l+1,
for j{l+1.

We use induction on l. When l=0 the result is immediate. Now suppose
the result is valid up to l. The three-term recurrence relation for the matrix
polynomials (U A, B

n )n gives that

U A, B
l+1(t) Rn&1, k(t)=A*&1(tU A, B

l (t)&BU A, B
l (t)&AU A, B

l&1(t)) Rn&1, k(t).

The expression (2.5) and the three-term recurrence relation for (U A, B
n )

gives that

2j, l+1, n&1, k=A*&1(2j, l, n&1, k Bn& j, k+2j&1, l, n&1, kA*n& j+1, k

+2j+1, l, n&1, kAn& j, k)&A*&1B 2 j, l, n&1, k

&A*&1A 2j, l&1, n&1, k . (2.6)

For j�l+3 or j�l&1 the induction hypothesis shows that

lim
m � �

2j, l+1, nm&1, km
=%.

We study the cases j=l, j=l+1, and j=l+2 separately:

Case 1. j=l.

lim
m � �

2l, l+1, nm&1, km
= lim

m � �
A*&1(2l, l, nm&1, km

Bnm&l, km

+2l&1, l, nm&1, km
A*nm&l+1, km

+2l+1, l, nm&1, km
Anm&l, km

)

& lim
m � �

A*&1B 2l, l, nm&1, km

& lim
m � �

A*&1A 2l, l&1, nm&1, km

=A*&1(A&A)=%,

since, from (2.2), we have that limm � � Anm&l, km
=A.
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Case 2. j=l+1.

lim
m � �

2l+1, l+1, nm&1, km
= lim

m � �
A*&1(2l+1, l, nm&1, km

Bnm&l&1, km

+2l, l, nm&1, km
A*nm&l, km

+2l+2, l, nm&1, km
Anm&l&1, km

)

& lim
m � �

A*&1B 2l+1, l, nm&1, km

& lim
m � �

A*&1A 2l+1, l&1, nm&1, km

=A*&1(B&B)=%,

since, from (2.2), we have that limm � � Bnm&l&1, km
=B.

Case 3. j=l+2.

lim
m � �

2l+2, l+1, nm&1, km
= lim

m � �
A*&1(2l+2, l, nm&1, km

Bnm&l&2, km

+2l+1, l, nm&1, km
A*nm&l&1, km

+2l+3, l, nm&1, km
Anm&l&2, km

)

& lim
m � �

A*&1B 2l+2, l, nm&1, km

& lim
m � �

A*&1A 2l+2, l&1, nm&1, km

=A*&1A*=I,

since, from (2.2), we obtain limm � � Anm&l&1, km
=A. Thus, Step 2 has been

proved.

We are now ready to prove that

lim
m � � |

d+nm , km
(t)

z&t
=|

dWA, B (t)
z&t

, for z # C"1.

We will use the so-called method of moments: suppose +n and + are prob-
ability measures on R with moments of every order and that + has compact
support. If (rn)n is a sequence of polynomials, rn of degree n, and
limn � rk(t) d+n(t)=� rk(t) d+(t) for k=0, 1, 2, ..., then +n converges weakly
to + (see [F]). This method can easily be extended to positive definite
matrices of measures. Weak convergence has the usual meaning: a sequence
of matrices of measures (+n)n on a metric space X converges weakly to +
if limn � f d+n=� f d+ for every continuous and bounded function f: X � CN_N.
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The sequence of matrix polynomials (U A, B
l ) l is orthonormal with respect

to WA, B which has compact support (see [D6, Lemma 2.1]), and hence

| U A, B
l (t) dWA, B(t)={I

%
for l=0,
for l{0.

Using Step 2 and by applying the method of moments we get that the
sequence (+nm , km

)m converges weakly to WA, B and so, since 1�(z&t) is
bounded for z # C"1, we get that

lim
m � � |

d+nm , km
(t)

z&t
=|

dWA, B (t)
z&t

.

The uniform convergence on compact sets of C"1 follows from the
Stieltjes�Vitali Theorem. K

3. PROOF OF THEOREM 1.1

Let (Cn)n be a sequence of N_N positive definite matrices and let (Pn)n

be a sequence of orthonormal polynomials satisfying the three-term
recurrence relation (1.1). In order to apply Theorem 2.1, we consider the
scaled sequence of matrix polynomials (Pn(Ck ; t))n . Taking into account
(1.5), we have

CktPn(Ck ; t)=An+1Pn+1(Ck; t)+BnPn(Ck ; t)+An*Pn&1(Ck ; t), n�0,

and so,

tC 1�2
k Pn(Ck ; t)=C &1�2

k An+1 C &1�2
k C 1�2

k Pn+1(Ck ; t)

+C &1�2
k BnC &1�2

k C 1�2
k Pn(Ck ; t)

+C &1�2
k An*C &1�2

k C 1�2
k Pn&1(Ck ; t), n�0. (3.1)

For each k, write

Rn, k(t)=C 1�2
k Pn(t; Ck);

An, k=C &1�2
k AnC &1�2

k ;

Bn, k=C &1�2
k BnC &1�2

k .

Hence, for each k, the sequence of matrix polynomials (Rn, k)n satisfies
the following three-term recurrence relation,

tRn, k(t)=An+1, k Rn+1, k(t)+Bn, k Rn, k(t)+A*n, k Rn&1, k(t), n�0,
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with initial conditions R0, k(t)=C 1�2
k and R&1, k(t)=%. The sequence of

matrix polynomials (Rn, k)n is then orthonormal with respect to a certain
varying matrix of measures Wk .

Under the assumptions (1.2) it is easy to see that the limit condition
(2.2) holds for nm=km=m. Indeed, for l�0

lim
n � �

An&l, n= lim
n � �

C &1�2
n An&lC &1�2

n

= lim
n � �

C &1�2
n C 1�2

n&1C &1�2
n&1 } } } C 1�2

n&lC
&1�2
n&l An&l

C 1�2
n&l C

&1�2
n&l } } } C &1�2

n&1 C 1�2
n&1C &1�2

n =A.

In the same way we can prove that limn � � Bn&l, n=B, for l�0.
We now show that the zeros of Pn(Cn ; t) are real. Indeed, Pn(Cn ; t)=

C&1�2
n Rn, n(t), and so the zeros of Pn(Cn ; t) are the zeros of Rn, n(t). But

these zeros are real because Rn, n(t) is the n th orthonormal polynomial with
respect to a certain matrix weight Wn .

Finally we prove that, assuming the matrix sequence (Cn)n to be increas-
ing, the zeros of Pn(Cn ; t) are bounded (and so 1 is a compact set):

Lemma 3.1. Assume that the matrix sequence (Cn)n is increasing. Then
there exists a positive constant M>0, which does not depend on n, satisfying
that if xn, n, j is a zero of Pn(Cn ; t) then |xn, n, j |<M.

Proof. We consider J, the N-Jacobi matrix associated to (Pn)n , and
J� (k), the N-Jacobi matrix associated to (C 1�2

k Pn(Ck ; } ))n defined by

J=\
B0

A1*
%
b

A1

B1

A2*
b

%
A2

B2
. . .

%
%

A3
. . .

} } }
} } }
} } }
. . .+

and

J� (k)=\
C &1�2

k B0 C &1�2
k

C &1�2
k A1*C &1�2

k

%
b

C &1�2
k A1C &1�2

k

C &1�2
k B1C &1�2

k

C &1�2
k A2*C &1�2

k

b

%
C &1�2

k A2C &1�2
k

C &1�2
k B2C &1�2

k. . .

%
%

C &1�2
k A3C &1�2

k. . .

} } }
} } }
} } }
. . .+ .

In Lemma 2.1 of [DL1, p. 101] it is proved that the zeros of Pn(t) are
the eigenvalues of JnN (truncated N-Jacobi matrix of dimension nN).
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Analogously, the zeros of Pn(Cn ; t) are the eigenvalues of the matrix J� (n)
nN .

Using the Gershgorin disk theorem for the location of eigenvalues, it is
enough to show that the entries of the matrix J� (n)

nN are bounded (independently
of n). But the entries of J� (n)

nN are of the form C &1�2
n AmC &1�2

n , or C &1�2
n BmC &1�2

n ,
for 0�m�n&1. By writing

C &1�2
n AmC &1�2

n =C &1�2
n C 1�2

m C &1�2
m AmC &1�2

m C 1�2
m C &1�2

n

C &1�2
n BmC &1�2

n =C &1�2
n C 1�2

m C &1�2
m BmC &1�2

m C 1�2
m C &1�2

n

and taking into account that C &1�2
m Am C &1�2

m and C &1�2
m BmC &1�2

m are
converging sequences and that C &1�2

n C 1�2
m �I if m�n ((Cn)n is an increas-

ing matrix sequence) we conclude that the entries of J� (n)
nN are bounded

(independently of n). K

We complete this section by establishing a relationship between the zeros
of the polynomial Pn(t) and the zeros of the scaled polynomial Pn(Cn ; t).

Lemma 3.2. For j=1, ..., nN, there exist positive constants ;n, j such that

+n, 1�;n, j�+n, N , and xn, n, j=
xn, j

;n, j
,

where xn, j are the zeros of Pn(t), xn, n, j the zeros of Pn(Cn ; t), and
+n, 1� } } } �+n, N the eigenvalues of Cn .

Proof. Taking into account that the zeros of Pn(t) are the eigenvalues
of JnN (truncated N-Jacobi matrix of dimension nN), the zeros of Pn(Cn ; t)
are the eigenvalues of the matrix J� (n)

nN (see Lemma 3.1), and that

J� (n)
nN=C&1�2

n JnNC&1�2
n ,

where Cn is the nN_nN diagonal block matrix defined as

Cn =\
Cn

%
b
%

%
Cn

b
%

} } }
} } }
. . .
} } }

%
%
b

Cn
+ ,

the Lemma follows by applying a well-known result by Ostrowski (see
[HJ1, p. 224]) about the eigenvalues of SAS*, where A is Hermitian and
S is nonsingular. K
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4. THE DEGENERATE CASE

We study here the case when the limit matrix A is singular. The ratio
asymptotics also exists but this behaviour strongly depends on the struc-
ture of the matrix A. The situation is very similar to the degenerate case of
convergence recurrence coefficients studied in [D6, Sect. 4].

We prove that if in the hypothesis of Theorem 1.1 we assume the limit
matrix A to be singular and the sequence (Cn)n to be increasing (which
implies that 1 is bounded), then there still exists a positive definite matrix
of measures &, which is degenerate (more precisely � (tI&B) d&(t)(tI&B)*
is singular), for which

lim
n � �

C 1�2
n Pn&1(Cn ; z) P&1

n (Cn ; z) A&1
n C 1�2

n =|
d&(t)
z&t

, z # C"1. (4.1)

Proceeding as in Section 3, we can reduce the result to the case of vary-
ing recurrence coefficients. Hence, it will be enough to prove that if in the
hypothesis of Theorem 2.1 we assume the limit matrix A to be singular and
1 to be bounded, then there still exists a positive definite matrix of
measures &, which is degenerate (more precisely � (tI&B) d&(t)(tI&B)* is
singular), for which

lim
m � �

Rnm&1, km
(z) R&1

nm , km
(z) A&1

nm , km
=|

d&(t)
z&t

, for z # C"1. (4.2)

Using the matrix polynomials tlI instead of U A, B
l (t) we find that the

coefficients 2i, l, n&1, k which appear in (2.5) now satisfy the formula

2j, l+1, n&1, k=2j, l, n&1, k Bn& j, k+2 j&1, l, n&1, kA*n& j+1, k

+2j+1, l, n&1, k An& j, k ,

instead of (2.6). Using induction on l, it is easy to prove that the limit
limm � � 2j, l, nm&1, km

exists for j, l�0, although in this case we cannot
compute it explicitly.

This shows that the limits limm � � � tl d+nm , km
, l�0, exist. Since � d+n, k=I,

n, k�0 (see (2.4)) by using the Banach�Alaoglu theorem we conclude that
(+nm , km

)m has a limit point &. Since 1 is bounded this matrix of measures
& has compact support. We can now finish by applying again the method
of moments.
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To prove that this matrix of measures & is degenerate, it is enough to use
the quadrature formula for the polynomials (Rn, k)k and the definition of
the measure & to get that (see [D6, Sect. 4] for more details)

| (tI&B) d&(t)(tI&B)*=A*A.

Although we have not found an explicit expression for &, this matrix of
measures can be computed from the following expression of its Hilbert
transform. If we write

FA, B(z)=|
d&(t)
z&t

, z � supp(&),

then this analytic matrix function satisfies the matrix equation

A*FA, B(z) AFA, B(z)+(B&zI ) FA, B(z)+I=%.

Indeed, let us multiply to the right the formula given in (3.1) by
P&1

n (Cn ; z) C &1�2
n . We now put k=n and take limit as n tends to �. First

of all, let us notice that the ratio

C&1�2
n An+1Pn+1(Cn ; z) P&1

n (Cn ; z) C &1�2
n

tends to F &1
A, B(z). To see this, it is enough to write it as

[D1�2
n+1Pn(Dn+1 ; z) P&1

n+1(Dn+1 ; z) A&1
n+1D1�2

n+1]&1,

where Dn+1=Cn , and take into account that the sequence (Dn)n satisfies
the same hypothesis that the sequence (Cn)n . Hence after taking the limit,
we have

zI=F &1
A, B(z)+B+A*FA, B(z) A,

from where it is easy to obtain the matrix equation.

5. EXAMPLES

(1) Let us consider the 2_2 case when the matrix limits A and B are
diagonal matrices,

A=\a
0

0
b+ , B=\c

0
0
d+ ,
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with a, b>0. Taking into account Corollary 2.3 of [D6], we can give the
following explicit expression for the ratio asymptotic of (Pn)n :

lim
n

C 1�2
n Pn&1(Cn ; z) P&1

n (Cn ; z) A&1
n C 1�2

n

= 1
2 \(z&c)�a2

0
0

(z&d )�b2+
& 1

2 \- (z&c)2&4a2�a2

0
0

- (z&d )2&4b2�b2+ .

(2) An important particular case of Example 1 is when the matrix
recurrence coefficients have the form

B0=\b&1

a0

a0

b0+ ,

Bn=\b&n&1

0
0

bn+ , n=1, ...

An=\a&n

0
0

an+ , n=0, 1, ... .

They are closely related to bilateral birth and death processes (see [P,
ILMV, V4]) and to the doubly infinite difference equation (see [MR]),

t:n(t)=an+1:n+1(t)+bn :n(t)+an :n&1(t), n # Z.

The cases an=dn, b2
n=an2+bn+c, n # Z, with a, b, c, d real, a, c{0 and

b2
n>0, were studied in [MR], and are related to associated Meixner

(d 2>4a>0), Meixner�Pollaczek (d 2<4a) and Laguerre (d 2=4a{0)
polynomials.

For these particular examples, we can now take

Cn=\- n
0

0
- n+ .

Since Cn is diagonal, we can define the scaled polynomials Pn(Cn ; t) using
(1.3), (1.4), or (1.5).

The sequence (Cn)n satisfies

lim
n

C &1�2
n C 1�2

n&1=I;
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the other limits in (1.2) can also be easily computed:

lim
n

C &1�2
n AnC &1�2

n =A=\d
0

0
d+ ,

lim
n

C &1�2
n BnC &1�2

n =B=\- a
0

0
- a+ .

From Example 1, we get the asymptotic behaviour

lim
n

1
d

Pn&1(Cn ; z) P&1
n (Cn ; z)=

1
2d 2 (z&- a&- (- a&z)2&4d 2) I.
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